

T&A[™] Cloning Vector Kit Protocol

Cat. No.

FYC001-20P

FYC002-20P

Product Use Limitation & Warranty

This product is intended to be used for life science research only. It has not been approved for drug or diagnostic purpose. YEASTERN's products should not be resold, modified for resale, or used to manufacture commercial products without written approval by YEASTERN. YEASTERN guarantees the performance of all products in the manner described in our protocol. The purchaser must determine the suitability of the product for its particular use. Should any product fail to perform satisfactorily due to any reason other than misuse, YEASTERN will replace it free of charge.

Copyright® 2012 All rights reserved. Yeastern Biotech Co., Ltd

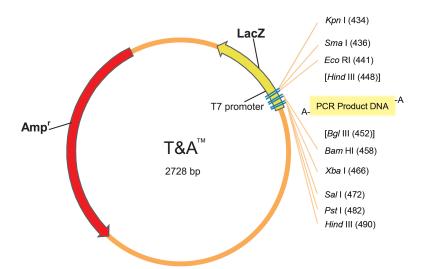
Yeastern Biotech Co., Ltd.

rights reserved.

Copyright® 2012 All

r. L0514

No part of these protocols may be reproduced in any form or by any mean, transmitted, or translated into a machine language without the permission of YEASTERN BIOTECH CO., LTD.


Address: 6F-3, 23 Lane 169, Kang Ning St., Shijr, Taipei, 22180 Taiwan. Tel: +886-2-2695-3922 Fax: +886-2-2695-3979 Email: yeastern@yeastern.com.tw Website: www.yeastern.com

Manual Index

1. Vector map of T&A™ Cloning Vector	2
 DNA sequence of multiple cloning sites in T&A[™] Cloning Vector 	3
 Protocol for ligation using T&A™ Cloning Vector 	3
4. Protocol for colony PCR	4
5. Product components	5
6. Restriction enzyme sites of T&A™ Cloning Vector	6
7. Suggestions and notes	8
8. Troubleshooting	9

Copyright[®] 2012 All rights reserved. Yeastern Biotech Co., Ltd. No part of this protocol may be reproduced in any form or by any means, or transmitted, or translated into a machine language without the permission of Yeastern Biotech Co., Ltd.

1. Vector map of T&A[™] Cloning Vector

Figure 1. Map and sequence reference points of T&ATM Cloning Vector

* Before the insert is incorporated into T&ATM Cloning Vector, there is only one *Hind*III site and no *Bg*/II site present in the multiple cloning region. After the incorporation, the 3'-A overhangs at both end of the insert will complement with the 3' overhanging T at the terminals of the vector and generate one additional *Hind*III site and one new *Bg*/II site. This merit of T&ATM vector makes cloning more economical and convenient.

Multiple cloning region	434 to 490
LacZ start codon	511
LacZ operator	531 to 548
<i>Lac</i> Z gene	511 to 149
Amp ^r gene	2528 to 1671
T7 promoter	402 to 439
M13 forward primer	359 to 375
M13 reverse primer	507 to 528
β -lactamase coding region	1524 to 2528
Lac operon sequences	239 to 398, 488 to 725

2. DNA sequence of multiple cloning region in T&A™ Cloning Vector

301	TACGCCAGCT	GGCGAAAGGG	GGATGTGCTG	CAAGGCGATT	AAGTTGGGTA
	ATGCGGTCGA	CCGCTTTCCC	CCTACACGAC	GTTCCGCTAA	TTCAACCCAT
		M13 Forward Prime	er		
351	ACGCCAGGGT	TTTCCCAGTC	ACGACGTTGT	AAAACGACGG	CCAGTGAATT
	TGCGGTCCCA	AAAGGGTCAG	TGCTGCAACA	TTTTGCTGCC	GGTCACTTAA
		T7 Promote	er	Kpnl <u>Smal</u>	EcoRI HindIII
401	GTAATACGAC	TCACTATAGG	GCGAGCTCGG	TACCCGGGCG	AATTCCAAGC
	CATTATGCTG	AGTGATATCC	CGCTCGAGCC	ATGGGCCCGC	TTAAGGTTCG
	_	Bg/IIBamH	li Xbai	SallPsi	<u>. </u>
451	TT Insert	AGATCTGGAT	CCCCTCTAGA	GTCGACCTGC	AGGCATGCAA
	AA DNA	TCTAGACCTA	GGGGAGATCT	CAGCTGGACG	TCCGTACGTT
	HindIII				
493	CGTTGGCGTA	ATCATGGTCA	TAGCTGTTTC	CTGTGTGAAA	TTGTTATCCG
	GCAACCGCAT	TAGTACCAGT	ATCGACAAAG	GACACACTTT	AACAATAGGC
			M13 Reverse Pri	mer	

Figure 2. Multiple cloning site sequences of T&A[™] Cloning Vector

3. Protocol for ligation using T&A™ Cloning Vector

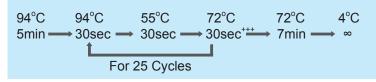
- 1. Centrifuge T&A[™] Cloning Vector and PCR DNA samples briefly to collect contents at the bottom of the tubes.
- 2. Vortex the ligation buffers vigorously before use.
- 3. Set up the following items as described below :

	Standard Control	Positive Control
Ligation Buffer A	1 µl	1 µl
Ligation Buffer B	1 µl	1 µl
T&A [™] cloning vector	2 µl	2 µl
PCR product	X µl	****
yT₄ DNA ligase	1 µl	1 µl
Control DNA	****	3 µl
Add doionized water to	a final volume of 10 i	d.

Add deionized water to a final volume of 10 µl

4. Mix the reactions by pipetting.

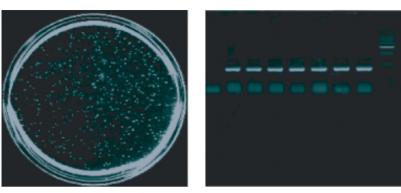
- 5. Incubate the reactions for 5 to 15 min at 22° C. Alternatively, if higher transformation efficency is needed, incubate the reactions overnight at 4° C.
- 6. Transformation with appropriate competent cells accroding to user's downstream applications.


copyright@ 2012 All rights reserved. Yeastern Biotech Co., Ltd.

4. Protocol for colony PCR

1. Prepare 25 μl of PCR reaction buffer in a microfuge tube as described below. Pick a single colony with a sterile toothpick and directly swirl it into PCR reaction buffer as the template.

PCR premixed buffer	
(O'in1 DNA polymerase premix, FYT201-100P)	23 µl
M13-F (10 μM)	1 µl
M13-R (10 μM)	1 µl


2. Set up PCR program

⁺⁺⁺The time duriation at 72°C is set according to the length of insert DNA. (In general, DNA polymerase can synthesize 1 Kb of DNA in 1 minute.)

3. Run on 1% agarose gel

Example : Using the control DNA provided in the T&A[™] cloning vector kit as the insert DNA. The colony PCR result is shown as below.

*According to different primer designs, the size of colony PCR product seen on the agarose gel will change.

In this colony PCR, the size of the PCR product on the gel is larger than the insert DNA size by about 150 bp.

5. Product components

T&A™ Cloning Kit	Cat. No. F	-YC001-20P
Components	Concentration	Volume
T&A™ Cloning Vector (20 reactions)	25 ng/µl	40 µl
Control Insert DNA	10 ng/µl	10 µl
yT₄ DNA Ligase	2 U/µI	20 µl
10x Ligation Buffer A		50 µl
10x Ligation Buffer B		50 µl
Forward Primer (M13-F)	10 µM	50 µl
Reverse Primer (M13-R)	10 µM	50 µl
Storage	Condition: -20°C	

T&A™ Cloning Vector	Cat. No.	FYC002-20P
Components	Concentration	Volume
T&A™ Cloning Vector (20 reactions)	25 ng/µl	40 µl
Control Insert DNA	10 ng/µl	10 µl
Storage	Condition: -20°C	

Suggestions

- 1. Avoid multiple freeze-thaw cycles and exposure to frequent temperature changes by preparing single-use aliquots of the ligation buffers.
- 2. *Pfu* DNA polymerase possesses proofreading activity; it does not have the terminal transferase-like activity like Taq DNA polymerase. Ligation reactions using *Pfu* amplified DNA containing no A-tails will result in no positive colonies.
- 3. Methods for increasing the ligation efficiency :

A. A-tailing: purified PCR product	Χμĺ
10X PCR buffer	10 µl
10 mM dATP	2 µl
Таq	1 µl

- i. Add deionized water to a final volume of 100 µl.
- ii. Incubate at 72°C for 1 hr.
 - Purifyithe A-tailed DNA and use in the ligation reaction.
- **B.** If the maximum of transformants is required, incubate the reaction overnight at 4°C.
- **C.** The optimial efficiency can be achieved by using a 1:3 molar ratio of vector DNA to the insert DNA.
- D. Use competent cells with higher efficiency such as ECOS[™] (>10⁸cfu/µg DNA) series for transformation.

6. Restriction enzyme sites of T&A[™] Cloning Vector

Enzyme	Position	Enzyme	Position	Enzyme	Position	Enzyme	Position	Enzyme	Position
Aatll	2664	AspEl	1742	<i>Cfr</i> 10I	1822	Maml	457	Sspl	2546
Acc65I	430	Aval	434	Drall	2718	Narl	237	Xbal	466
Accl	473	Banll	428	<i>Eam</i> 1105I	1742	Ndel	185	Xmal	434
Acsl	441	<i>Bam</i> HI	458	<i>Ec</i> /136II	426	Pstl	482	Xmnl	2341
AflIII	849	Bcgl	2281	Eco01091	2718	Sacl	428		
Ahdl	1742	Bpml	1812	EcoRI	441	Sall	472		
<i>Alw</i> NI	1265	B saBI	457	<i>Hin</i> cll	474	Sapl	733		
Apol	441	Bsal	1803	<i>Hin</i> dll	474	Scal	2222		
Asp700	2341	BspMI	485	Kasl	236	Smal	436		
Asp718	430	<i>Bsr</i> FI	1822	Kpnl	434	Sphl	488		

Restriction enzymes that DO NOT cut T&A[™] Cloning Vector

Aatl	Bbsl	<i>Bsi</i> WI	<i>Bst</i> Bl	Eco47III	Mrol	Nsil	Ppu10I	Spel
AccIII	Bc/I	<i>Bsm</i> FI	<i>Bst</i> Ell	EcoNI	Mscl	NspV	<i>Рри</i> МI	SspBl
AflII	Bfrl	Bsml	Bsu36l	<i>Eco</i> RV	Munl	Pacl	Rsrll	Styl
Agel	Blnl	Bsp120I	Ce/II	Espl	Nael	PaeR7I	Sacll	Swal
Apal	<i>Bpu</i> 1102I	BspDI	Clal	Hpal	Ncol	<i>Pfl</i> MI	SexAl	Tth1111
Aspl	BpuAl	BspEl	Csp45I	Kspl	NgoMI	PinAl	Sfil	Van91I
Asull	BsaAl	<i>Bsr</i> Gl	Dralll	Mfel	Nhel	PmaCl	Sful	Xcml
<i>Avr</i> ll	BseAl	BssHll	Eagl	Mlul	Notl	Pmel	SgrAl	Xhol
<i>Bbr</i> Pl	Bsgl	<i>Bst</i> 1107I	Ec/XI	<i>Mlu</i> NI	Nrul	Pmll	SnaBl	Xmalll

Restriction enzymes that cut T&A[™] Cloning Vector more than 2 times

Name	Position	Name	Position	Name	Position
Acil	34sites	Cfol	17 sites	Mbol	16 sites
Alul	17sites	Csp6l	169, 431,2221	Mboll	7 sites
<i>Alw</i> 44I	178,1163,2409	Ddel	6 sites	Mcrl	5 sites
Alwl	10 sites	Dpnl	16 sites	Mnll	13 sites
Aosl	259,1964	Dpnll	16 sites	Msel	13 sites
ApaLl	178,1163,2409	Dral	1608,1627,2319	Msl	1994,2153,2512
Asel	620,679,1914	Drdl	98,957	MspA1I	6 sites
Asnl	620,679,1914	DsaV	12 sites	Mspl	13 sites
AspHI	5 sites	Eael	389,688,2130	Mval	5 sites
Avall	1880,2102	Earl	297,733,2537	Mvnl	10 sites
Avill	259,1964	Eco57I	1397,2409	Mwol	13 sites
		EcoRII	5 sites	Ncil	7 sites
Banl	4 sites	Esp3I	4, 46	Ndell	16 sites
Bbvl	12 sites	Fnu4HI	19 sites	NlallI	11 sites
Bfal	4 sites	<i>Fnu</i> DII	10 sites	NlalV	11 sites
Bg/I	252,1862	Fokl	5 sites	Nspl	42,488,853
Bmyl	5 sites	Fspl	259,1964	Plel	5 sites
BsaHl	237,2279,2661	Haell	240,727,1097	<i>Psp</i> 1406l	1968,2341
BsaJl	4 sites	Haelll	11 sites	Pvul	280,2112
BsaWl	1055,1202,2033	Hgal	4 sites	Pvull	309,673
<i>Bsi</i> El	5 sites	HgiAl	5 sites	Rcal	1569,2577,2682
<i>Bsi</i> HKAI	5 sites	Hhal	17 sites	Rsal	170,432,2222
BsiYl	6 sites	HindIII	(448),490	Sau3Al	16 sites
Bs/I	6 sites	Hinfl	7 sites	<i>Sau</i> 96I	6 sites
<i>Bsm</i> Al	4 sites	HinP1I	17 sites	ScrFl	12 sites
Bsp1286I	5 sites	Hpall	13 sites	SfaNI	8 sites
BspHI	1569,2577,2682	Hphl	7 sites	Sfcl	5 sites
BspWI	13 sites	HPY188I	10 sites	Snol	178,1163,2409
<i>Bsr</i> Bl	541,782,2583	ltal	19 sites	Taql	473,949,2393
<i>Bsr</i> DI	1803,1977	Ksp632I	297,733,2537	Tfil	684,824
Bsrl	11 sites	Mael	4 sites	Thal	10 sites
BstNI	5 sites	Maell	5 sites	Tru9I	13 sites
BstUI	10 sites	Maelll	11 sites	Tsp509I	8 sites
BstYl	7 sites			Xholl	7 sites

7. Suggestions and notes

- For blue-white selection, plating should be done onto agar plates containing 20-50 μg/ml ampicillin plus 0.1-0.5 mM IPTG and 40-60 μg/ml X-gal. Alternatively, the IPTG and X-gal can be spreaded evenly onto a 20-50 μg/ml ampicillin plate at least 2 hr prior to plating. After the colonies grow for at least 14 hr, the plates can be put at 4°C and the blue color will continue to develop.
- 2. When coupled with the colony PCR technique, clones can be screened easily and precisely.
- 3. Multiple freeze-thawing DOES NOT affect the quality of T&ATM Cloning Vector, but exposure to frequent temperature changes will degrade ATP resulting in poor ligation.
- 4. For questions not addressed here, please visit our web site for details. http://www.yeastern.com

8. Troubleshooting

Symptom	Comments	Suggestions
No colonies	Problems in transfor- mation or use low- efficiency competent cells.	Self-ligated vector should only yield < 50 colonies, while with A-tailed insert DNA contol the transformation should yield > 500 colonies. If there is no colony on the plate, use high-efficient cy competent cells to overcome the problem.
Less than 100 trans- formed colonies grow on selection plate. When checking the colonies with colony PCR using M13F&R primers, false inserts of 0.15 and 1.8 kb fragments are ob- tained.	 Improper molar ratio of the vector DNA to the insert DNA. Bad A-tailed insert DNA. The 0.15kb fragment is derived from reac- tion of self-ligation of the vector itself. The 1.8 kb fragment is derived from the residue in production process. 	 Check the A-tailed insert DNA quality. Using a 1:3 to 1:6 molar ratio of the vector DNA to the insert DNA. Do not try to amplify and sequence the clones when less than 100 transformed colonies obtained. Most of them contain false inserts. If the size of your insert DNA is about 1.6~1.8 kb, please perform colony PCR by specific primers to check the clone at first. If the clone is correct, then sequence it with M13 primers.
High colony number, but high percentages of blue colonies with insert DNA.	 Improper ligation reaction. DNA is inserted, but it's not disrupting the expression of LacZ gene or the insertion generates in-frame fusion of the coding region to lacZ gene. 	 PCR DNA should be gel-purified of spin column-cleaned. Avoid multiple freeze-thaw and exposure to frequent temperature changes by preparing single-use aliquots of the ligase buffer. If a maximum of transformants is required, incubate the ligation reac tion overnight at 4 °C. If multiple PCR products occur, target DNA should be gel-purified before ligation. Use colony PCR to screen both of the blue or white colonies.
No blue colonies are present on the plate.	 Ampicillin is inactive. IPTG/X-Gal is insufficient or inactive. 	 Check if ampicillin plates are prepared properly used within 1 month. Check if the IPTG/X-Gal are fresh and the IPTG/X-Gal plates should be stored in dark and cold place.